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Abstract
We introduce a new class of generalized Suzuki-type nonexpansive mappings and prove
strong convergence results to fixed points of the mappings. Our results generalize many
important results in the literature.

Introduction
Let E be a Banach space and let K be a nonempty subset of E. A mapping T : K → K
is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K. The set of fixed points of
T is denoted by F (T ),i.e., F (T ) = x ∈ K : Tx = x. It is well known that if E is uniformly
convex and K is bounded, closed and convex subset of E, then F (T ) is nonempty. Many
authors (see e.g [1] - [25] and their references)have studied fixed point results for nonex-
pansive mappings and their generalizations. The map T is called quasi-nonexpansive if
‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ K, p ∈ F (T ).
Recently, Suzuki [21] introduced a weaker class of contractions and proved the following
result:

Theorem 1 (see [21]): Let θ : [0, 1)→ (1
2
, 1] be defined by

θ(r) =


1 if 0 ≤ r ≤ (

√
5−1
2

),

(1− r)r−2 if (
√
5−1
2

) ≤ r ≤ 2
−1
2 ,

(1 + r)−1 if 2
−1
2 ≤ r<1

Then for a metric space (X, d), the following are equivalent:
(i) X is complete
(ii) There exists r ∈ (0, 1) such that every mapping T on X satisfying
θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y), ∀x, y ∈ X, has a fixed point.

More recently, using the idea of theorem 1, Suzuki (see [22]), defined a very natural con-
dition satisfied by a class of mappings, known as condition (C ), as follows:
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Definition 1 (see [22]): Let T be a mapping on a subset C of a Banach space X. Then
T is said to satisfy condition(C ) if
(C) 1

2
||x− Tx|| ≤ ||x− y|| implies ||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ C.

The author showed that this condition is weaker than nonexpansiveness and stronger than
quasi-nonexpansiveness (see [22]). Furthermore, the author proved weak and strong con-
vergence results for mappings satisfying condition(C ). More precisely, the author stated
and proved the following theorems:

Theorem 2 (see [22]): Let T be a mapping on a compact convex subset C of a Banach
space X. Assume that T satisfies condition (C). Define the sequence {xn} in C by x1 ∈ C
and

xn+1 = λTxn + (1− λ)xn

for n ∈ N, where λ is a real number belonging to [1
2
, 1). Then {xn} converges strongly to

a fixed point of T.

Theorem 3(see [22]): Let T be a mapping on a weakly compact convex subset C of
a Banach space X with the Opial property.Assume that T satisfies condition (C). Define
the sequence {xn} in C by x1 ∈ C and

xn+1 = λTxn + (1− λ)xn

for n ∈ N, where λ is a real number belonging to [1
2
, 1). Then {xn} converges weakly to a

fixed point of T.

Theorem 4(see [22]): Let C be a weakly convex subset of a UCED Banach space.
Let S be a family of commuting mappings on C satisfying condition (C). Then S has a
common fixed point.
The purpose of this paper is to introduce a class of mappings that satisfy a condition
weaker than condition (C). Furthermore, we prove strong convergence results to fixed
points of our class of mappings, in certain Banach spaces. We give the following definition:

Defintion 2: Let T be a mapping on a subset C of a Banach space X, with F (T ) 6= ∅.
Then T is said to satisfy condition(C ∗) if

(C∗) 1
2
||x− Tx|| ≤ ||x− p|| implies ||Tx− p ≤ ||x− p||,∀x ∈ C, p ∈ F (T )

All quasi-nonexpansive mappings satisfy condition(C ∗). It is also obvious that any map-
ping T that satisfies condition(C ) and possesses a non-empty fixed point set, satisfies
condition(C ∗). We now present an example to show that there exist mappings which
satisfy condition condition(C ∗) but do not satisfy condition(C ). Hence condition(C ∗) is
weaker than condition(C ).
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Example: Define T : [−π, π]→ [−π, π] by Tx = xcosx. Clearly, F (T ) = {0}. We have

1

2
||x− Tx|| =

1

2
|x− xcosx|

=
1

2
|x||1− cosx|

≤ |x|
= ||x||

Consider x = π
2

and y = π. We have
||x− y|| = π

2
. Hence 1

2
||x− Tx|| ≤ ||x− y||. However,

||Tx−Ty|| = |π
2
cosπ

2
−πcosπ| = |π|>π

2
= ||x−y||. Hence, T does not satisfy condition(C ).

On the other hand, we have

1

2
||x− Tx|| =

1

2
|x− xcosx|

=
1

2
|x||1− cosx|

≤ |x|
= ||x− p||

Furthermore,
||Tx− p|| = |xcosx− 0| ≤ |x| = ||x− p||. Hence, T satisfies condition(C ∗).
In [22], Suzuki noted that condition(C ) is weaker than nonexpansiveness. It is now ob-
vious from the foregoing that condition(C ∗) is weaker that condition(C ) which is weaker
than nonexpansiveness.

Preliminaries
Throughout this work we shall denote the set of natural numbers by N.

Definition 3 (see [22]): Banach space X is said to be strictly convex if ‖x+ y‖ < 2 for
all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y.

Definition 4 (see [25]): Let X be a Banach space and C be a subset of X. A mapping
T : C → C is called demi-compact if whenever {xn} is a bounded sequence in the domain
of T such that {xn − Txn} converges strongly, then {xn} has a subsequence which con-
verges strongly.

Lemma 1(see e.g [23] ): A Banach space X is said to be uniformly convex if and only
if there exist a continuous strictly increasing and convex function g : [0, ∞) → [0, ∞)
satisfying g(0) = 0, such that

||λx− (1− λ)y||p ≤ λ||x||p + (1− λ)||y|p − wp(λ)g(||x− y||)

for all x, y ∈ Br := {x ∈ X : ||x|| ≤ r}, λ ∈ [0, 1] with wp(λ) = λ(1− λ)p + λp(1− λ), for
p>1, r>0.
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We now present some important lemmas, which will be useful in the sequel.

Lemma 2 (see e.g [24]): Let {an}, {bn} and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn,

for all n ≥ 1. If
∑
δn<∞ and

∑
bn<∞, then lim an exists. If in addition {an} has a

subsequence which converges strongly to zero, then lim an = 0.

Lemma 3: Let T be a mapping on a closed subset C of a Banach space E. Assume that
T satisfies condition (C∗). Then F (T ) is closed. Moreover, if E is strictly convex and C
is convex, then F (T ) is also convex.

Proof: We want to prove the following:

1 . F(T) is closed; i.e. for xn ∈ F ,xn → x then x ∈ F (T )

2 . F(T) is convex when C is convex and X is strictly convex.

Let {xn} be a sequence in F (T ) converging to some point x ∈ C. By condition (C∗) we
have(
1
2

)
‖xn − Txn‖ = 0 ≤ ‖xn − x‖ for n ∈ N ,

implies ‖Tx− xn‖ ≤ ‖xn − x‖ for x ∈ C and xn ∈ F (T )
It follows that lim supn→∞ ‖Tx− xn‖ ≤ lim supn→∞ ‖xn − x‖ = 0

This implies lim supn→∞ ‖Tx− xn‖ = 0. Hence, lim supn→∞{Tx− xn} = 0,
which shows that {xn} also converges to Tx. By the uniqueness of limits we have that
Tx = x. Therefore F (T is closed.
Next, by assuming that X is strictly convex and C is convex, we show that F (T ) is convex.
Given λ ∈ (0, 1) and a, b ∈ F (T ) with a 6= b, let z = λa + (1− λ) b ∈ C. Then F (T ) is
convex if Tz = z. Let
a = λa+ (1− λ) a
b = λb+ (1− λ) b
z = λa+ (1− λ) b
Since X is strictly convex, there exists s ∈ [0, 1] such that Tz = sa+ (1− s)b. Therefore,
to show that z ∈ F (T ) ,i.e Tz = z, it suffices to show that λ = s. Since
Let a = sa+ (1− s)a, then
Tz − a = (1− s)(b− a). Therefore

‖a− Tz‖ = (1− s)‖a− b‖ (1)

Since T satisfies condition C∗, we have ‖a− Tz‖ ≤ ‖a− z‖ for z ∈ C and a ∈ F (T ).
This implies

(1− s)‖a− b‖ ≤ ‖a− z‖ (2)

4
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Now, let a = λa+ (1− λ) a. Then
a− z = (1− λ) (a− b) . This yields

‖a− z‖ = (1− λ) ‖a− b‖ (3)

Substituting for ‖a− z‖ in (2), we have

(1− s)‖a− b‖ ≤ (1− λ) ‖a− b‖ (4)

Next, Observe that
b = bs+ (1− s)b, so that
Tz − b = s(a− b). This implies

‖Tz − b‖ = s‖a− b‖ (5)

Also,
z − b = λ(b− a), so that
||z − b|| = λ||b− a||

Furthermore,
||Tz − b|| ≤ ||z − b||, by condition C∗. This implies

s‖b− a‖ ≤ λ‖b− a‖ (6)

From (4) and (6), we have s = λ. This completes the proof.

Lemma 4: Let T T be a mapping on a bounded convex subset of a uniformly convex
Banach space X, with F (T ) 6= ∅. Assume that T satisfies condition (C∗). Define the
sequence xn in C by x1 ∈ C and xn+1 = λTxn + (1 − λ)xn for n ∈ N, where λ ∈ (0, 1).
Then (i) lim{||xn − q||} exists, where q ∈ F (T ) (ii)limn−→∞ ‖Txn − xn‖ = 0.

Proof: Let q ∈ F (T ). From the fact that T satisfies condition C∗ and using lemmas (1),
we have

||xn+1 − q||p = ||λ(Txn − q) + (1− λ)(xn − q)||p

≤ λ||Txn − q||p + (1− λ)||xn − q||p − wp(λ)g(||xn − Txn||)
≤ ||xn − q||p − wp(λ)g(||xn − Txn||p) (7)

From (7) and lemma (2), lim{||xn − q||} exists.
Also from (7), we have ∑

wp(λ)g(||xn − Txn||) ≤ ||x1 − q||p

Since g is continuous, strictly increasing and g(0) = 0, this yields limn−→∞ ‖Txn−xn‖ = 0

Theorem 5: Let T with F (T ) 6= ∅, be a mapping on a compact convex subset C of a
uniformly convex Banach space X. Assume that T is continuous and satisfies condition
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C∗. Define a sequence {xn} in C by x1 in C and xn+1 = λTxn + (1 − λ)xn for n ∈ N,
where λ ∈ (0, 1) is a real number. Then {xn} converges strongly to the fixed point of T .

Proof: Since C is compact, there exists a subsequence {xnj
} of {xn} which converges

to z ∈ C. Since lim ||xnj
− Txnj

|| = 0 and T is continuous, we have lim ||xnj
− Txnj

|| =
||z − Tz|| = 0. This implies z ∈ F (T ). From this, limj−→∞ ‖xnj

− z‖ = 0, lemma (2) and
lemma(4), the proof is complete.

Theorem 6: Let T with F (T ) 6= ∅, be a mapping on a nonempty, convex, closed and
bounded subset C of a uniformly convex Banach space X. Assume that T is completely
continuous and satisfies condition C∗. Define a sequence {xn} in C by x1 in C and
xn+1 = λTxn + (1 − λ)xn for n ∈ N, where λ ∈ (0, 1) is a real number. Then {xn}
converges strongly to a fixed point of T .

Proof: From lemma (4), lim ||xn−Txn|| = 0. Since {xn} is bounded and T is completely
continuous, then {Txn} has a subsequence {Txnk

}which converges strongly. Hence {xnk
}

converges strongly. Suppose lim{xnk
} = z. Then lim{Txnk

} = Tz. Hence lim ||xnk
−

Txnk
|| = ||z−Tz|| = 0, so that z ∈ F (T ). Lemmas (2) and (4) now imply lim ||xn−z|| = 0.

This completes the proof of the theorem.

Theorem 7: Let T with F (T ) 6= ∅, be a mapping on a nonempty, convex, closed and
bounded subset C of a uniformly convex Banach space X. Assume T is continuous,
demi-compact and satisfies condition C∗. Define a sequence {xn} in C by x1 in C and
xn+1 = λTxn + (1 − λ)xn for n ∈ N, where λ ∈ (0, 1) is a real number. Then {xn}
converges strongly to a fixed point of T .

Proof: Since T is demi-compact, then {xn} has a subsequence {xnk
} which converges

strongly. Let limxnk
= w. Now, since lim ||xnk

−Txnk
|| = 0, and T is continuous, we have

lim ||xnk
− Txnk

|| = ||w − Tw|| = 0. This implies w ∈ F (T ). From lim ||xnk
− w|| = 0,

lemma (2) and lemma (4), we have that {xn} converges to a fixed point of T.

Theorem 8: Let C be a closed convex subset of UCED Banach space X. Let S be a
family of continuous demicompact commuting mappings on C satisfying condition C∗.

Then S has a common fixed point.

Proof: Observe that F (Ti) 6= ∅, ∀ i ∈ S. Further more by lemma (3), F (Ti) is closed and
convex for all i ∈ S. The rest of the proof now follows as in [22].

Remark 1: Observe that the mapping exhibited in our example is a continuous mapping.
Hence the continuity condition imposed on T in our theorems is natural.
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