Iterative Approximation of Fixed Points for a New Class of Generalized Suzuki-Type Nonexpansive Mappings

B. G. Akuchu, Nwigbo K. T. and Asanya C. M. Department of Mathematics University of Nigeria Nsukka e-mail: george.akuchu@unn.edu.ng, kenule.nwigbo@unn.edu.ng and asanya.ebuka@gmail.com

Abstract

We introduce a new class of generalized Suzuki-type nonexpansive mappings and prove strong convergence results to fixed points of the mappings. Our results generalize many important results in the literature.

Introduction

Let E be a Banach space and let K be a nonempty subset of E. A mapping $T: K \to K$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in K$. The set of fixed points of T is denoted by F(T), i.e., $F(T) = x \in K : Tx = x$. It is well known that if E is uniformly convex and K is bounded, closed and convex subset of E, then F(T) is nonempty. Many authors (see e.g [1] - [25] and their references) have studied fixed point results for nonexpansive mappings and their generalizations. The map T is called quasi-nonexpansive if $||Tx - p|| \le ||x - p||$ for all $x \in K$, $p \in F(T)$.

Recently, Suzuki [21] introduced a weaker class of contractions and proved the following result:

Theorem 1 (see [21]): Let $\theta : [0,1) \to (\frac{1}{2},1]$ be defined by

$$\theta(r) = \begin{cases} 1 & \text{if } 0 \le r \le \left(\frac{\sqrt{5}-1}{2}\right), \\ (1-r)r^{-2} & \text{if } \left(\frac{\sqrt{5}-1}{2}\right) \le r \le 2^{\frac{-1}{2}}, \\ (1+r)^{-1} & \text{if } 2^{\frac{-1}{2}} \le r < 1 \end{cases}$$

Then for a metric space (X, d), the following are equivalent:

(i) X is complete

(ii) There exists $r \in (0, 1)$ such that every mapping T on X satisfying

 $\theta(r)d(x,Tx) \leq d(x,y)$ implies $d(Tx,Ty) \leq rd(x,y), \ \forall x,y \in X$, has a fixed point.

More recently, using the idea of theorem 1, Suzuki (see [22]), defined a very natural condition satisfied by a class of mappings, known as condition (C), as follows:

Definition 1 (see [22]): Let T be a mapping on a subset C of a Banach space X. Then T is said to satisfy condition(C) if

(C) $\frac{1}{2}||x - Tx|| \le ||x - y||$ implies $||Tx - Ty|| \le ||x - y||, \forall x, y \in C.$

The author showed that this condition is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness (see [22]). Furthermore, the author proved weak and strong convergence results for mappings satisfying condition(C). More precisely, the author stated and proved the following theorems:

Theorem 2 (see [22]): Let T be a mapping on a compact convex subset C of a Banach space X. Assume that T satisfies *condition* (C). Define the sequence $\{x_n\}$ in C by $x_1 \in C$ and

$$x_{n+1} = \lambda T x_n + (1 - \lambda) x_n$$

for $n \in N$, where λ is a real number belonging to $[\frac{1}{2}, 1)$. Then $\{x_n\}$ converges strongly to a fixed point of T.

Theorem 3(see [22]): Let T be a mapping on a weakly compact convex subset C of a Banach space X with the Opial property. Assume that T satisfies *condition* (C). Define the sequence $\{x_n\}$ in C by $x_1 \in C$ and

$$x_{n+1} = \lambda T x_n + (1 - \lambda) x_n$$

for $n \in N$, where λ is a real number belonging to $[\frac{1}{2}, 1)$. Then $\{x_n\}$ converges weakly to a fixed point of T.

Theorem 4(see [22]): Let C be a weakly convex subset of a UCED Banach space. Let S be a family of commuting mappings on C satisfying *condition* (C). Then S has a common fixed point.

The purpose of this paper is to introduce a class of mappings that satisfy a condition weaker than *condition* (C). Furthermore, we prove strong convergence results to fixed points of our class of mappings, in certain Banach spaces. We give the following definition:

Definition 2: Let T be a mapping on a subset C of a Banach space X, with $F(T) \neq \emptyset$. Then T is said to satisfy $condition(C^*)$ if

 $(C^*) \frac{1}{2} ||x - Tx|| \le ||x - p||$ implies $||Tx - p \le ||x - p||, \forall x \in C, p \in F(T)$

All quasi-nonexpansive mappings satisfy $condition(C^*)$. It is also obvious that any mapping T that satisfies condition(C) and possesses a non-empty fixed point set, satisfies $condition(C^*)$. We now present an example to show that there exist mappings which satisfy $condition(C^*)$ but do not satisfy condition(C). Hence $condition(C^*)$ is weaker than condition(C).

Example: Define $T: [-\pi, \pi] \to [-\pi, \pi]$ by Tx = xcosx. Clearly, $F(T) = \{0\}$. We have

$$\frac{1}{2}||x - Tx|| = \frac{1}{2}|x - x\cos x|$$
$$= \frac{1}{2}|x||1 - \cos x|$$
$$\leq |x|$$
$$= ||x||$$

Consider $x = \frac{\pi}{2}$ and $y = \pi$. We have $||x - y|| = \frac{\pi}{2}$. Hence $\frac{1}{2}||x - Tx|| \le ||x - y||$. However, $||Tx - Ty|| = |\frac{\pi}{2}cos\frac{\pi}{2} - \pi cos\pi| = |\pi| > \frac{\pi}{2} = ||x - y||$. Hence, T does not satisfy condition(C). On the other hand, we have

$$\frac{1}{2}||x - Tx|| = \frac{1}{2}|x - x\cos x|$$
$$= \frac{1}{2}|x||1 - \cos x|$$
$$\leq |x|$$
$$= ||x - p||$$

Furthermore,

 $||Tx - p|| = |xcosx - 0| \le |x| = ||x - p||$. Hence, T satisfies $condition(C^*)$.

In [22], Suzuki noted that condition(C) is weaker than nonexpansiveness. It is now obvious from the foregoing that $condition(C^*)$ is weaker that condition(C) which is weaker than nonexpansiveness.

Preliminaries

Throughout this work we shall denote the set of natural numbers by N.

Definition 3 (see [22]): Banach space X is said to be strictly convex if ||x + y|| < 2 for all $x, y \in E$ with ||x|| = ||y|| = 1 and $x \neq y$.

Definition 4 (see [25]): Let X be a Banach space and C be a subset of X. A mapping $T: C \to C$ is called demi-compact if whenever $\{x_n\}$ is a bounded sequence in the domain of T such that $\{x_n - Tx_n\}$ converges strongly, then $\{x_n\}$ has a subsequence which converges strongly.

Lemma 1(see e.g [23]): A Banach space X is said to be uniformly convex if and only if there exist a continuous strictly increasing and convex function $g : [0, \infty) \to [0, \infty)$ satisfying g(0) = 0, such that

$$||\lambda x - (1 - \lambda)y||^{p} \le \lambda ||x||^{p} + (1 - \lambda)||y|^{p} - w_{p}(\lambda)g(||x - y||)$$

for all $x, y \in B_r := \{x \in X : ||x|| \le r\}, \ \lambda \in [0,1]$ with $w_p(\lambda) = \lambda(1-\lambda)^p + \lambda^p(1-\lambda)$, for $p > 1, \ r > 0$.

We now present some important lemmas, which will be useful in the sequel.

Lemma 2 (see e.g [24]): Let $\{a_n\}$, $\{b_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+\delta_n)a_n + b_n,$$

for all $n \ge 1$. If $\sum \delta_n < \infty$ and $\sum b_n < \infty$, then $\lim a_n$ exists. If in addition $\{a_n\}$ has a subsequence which converges strongly to zero, then $\lim a_n = 0$.

Lemma 3: Let T be a mapping on a closed subset C of a Banach space E. Assume that T satisfies condition (C^*) . Then F(T) is closed. Moreover, if E is strictly convex and C is convex, then F(T) is also convex.

Proof: We want to prove the following:

1. F(T) is closed; i.e. for $x_n \in F, x_n \to x$ then $x \in F(T)$

2. F(T) is convex when C is convex and X is strictly convex.

Let $\{x_n\}$ be a sequence in F(T) converging to some point $x \in C$. By condition (C^*) we have

This implies $\limsup_{n\to\infty} ||Tx - x_n|| = 0$. Hence, $\limsup_{n\to\infty} \{Tx - x_n\} = 0$, which shows that $\{x_n\}$ also converges to Tx. By the uniqueness of limits we have that Tx = x. Therefore F(T is closed.)

Next, by assuming that X is strictly convex and C is convex, we show that F(T) is convex. Given $\lambda \in (0, 1)$ and $a, b \in F(T)$ with $a \neq b$, let $z = \lambda a + (1 - \lambda) b \in C$. Then F(T) is convex if Tz = z. Let $a = \lambda a + (1 - \lambda) a$ $b = \lambda b + (1 - \lambda) b$ Since X is strictly convex, there exists $s \in [0, 1]$ such that Tz = sa + (1 - s)b. Therefore, to show that $z \in F(T)$, i.e Tz = z, it suffices to show that $\lambda = s$. Since Let a = sa + (1 - s)a, then Tz - a = (1 - s)(b - a). Therefore

$$||a - Tz|| = (1 - s)||a - b||$$
(1)

Since T satisfies condition C^* , we have $||a - Tz|| \le ||a - z||$ for $z \in C$ and $a \in F(T)$. This implies

$$(1-s)||a-b|| \le ||a-z|| \tag{2}$$

Now, let $a = \lambda a + (1 - \lambda) a$. Then $a - z = (1 - \lambda) (a - b)$. This yields

$$||a - z|| = (1 - \lambda) ||a - b||$$
(3)

Substituting for ||a - z|| in (2), we have

$$(1-s)\|a-b\| \le (1-\lambda) \|a-b\|$$
(4)

Next, Observe that b = bs + (1 - s)b, so that Tz - b = s(a - b). This implies

$$||Tz - b|| = s||a - b|| \tag{5}$$

Also, $z - b = \lambda(b - a)$, so that $||z - b|| = \lambda ||b - a||$

Furthermore, $||Tz - b|| \le ||z - b||$, by condition C^* . This implies $s||b - a|| \le \lambda ||b - a||$ (6)

From (4) and (6), we have $s = \lambda$. This completes the proof.

Lemma 4: Let T T be a mapping on a bounded convex subset of a uniformly convex Banach space X, with $F(T) \neq \emptyset$. Assume that T satisfies condition (C^*) . Define the sequence x_n in C by $x_1 \in C$ and $x_{n+1} = \lambda T x_n + (1 - \lambda) x_n$ for $n \in \mathbb{N}$, where $\lambda \in (0, 1)$. Then (i) $\lim\{||x_n - q||\}$ exists, where $q \in F(T)$ (ii) $\lim_{n \to \infty} ||Tx_n - x_n|| = 0$.

Proof: Let $q \in F(T)$. From the fact that T satisfies condition C^* and using lemmas (1), we have

$$\begin{aligned} ||x_{n+1} - q||^{p} &= ||\lambda(Tx_{n} - q) + (1 - \lambda)(x_{n} - q)||^{p} \\ &\leq \lambda ||Tx_{n} - q||^{p} + (1 - \lambda)||x_{n} - q||^{p} - w_{p}(\lambda)g(||x_{n} - Tx_{n}||) \\ &\leq ||x_{n} - q||^{p} - w_{p}(\lambda)g(||x_{n} - Tx_{n}||^{p}) \end{aligned}$$
(7)

From (7) and lemma (2), $\lim\{||x_n - q||\}$ exists. Also from (7), we have

$$\sum w_p(\lambda)g(||x_n - Tx_n||) \le ||x_1 - q||^p$$

Since g is continuous, strictly increasing and g(0) = 0, this yields $\lim_{n \to \infty} ||Tx_n - x_n|| = 0$

Theorem 5: Let T with $F(T) \neq \emptyset$, be a mapping on a compact convex subset C of a uniformly convex Banach space X. Assume that T is continuous and satisfies condition

 C^* . Define a sequence $\{x_n\}$ in C by x_1 in C and $x_{n+1} = \lambda T x_n + (1 - \lambda) x_n$ for $n \in \mathbb{N}$, where $\lambda \in (0, 1)$ is a real number. Then $\{x_n\}$ converges strongly to the fixed point of T.

Proof: Since C is compact, there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges to $z \in C$. Since $\lim ||x_{n_j} - Tx_{n_j}|| = 0$ and T is continuous, we have $\lim ||x_{n_j} - Tx_{n_j}|| = ||z - Tz|| = 0$. This implies $z \in F(T)$. From this, $\lim_{j \to \infty} ||x_{n_j} - z|| = 0$, lemma (2) and lemma(4), the proof is complete.

Theorem 6: Let T with $F(T) \neq \emptyset$, be a mapping on a nonempty, convex, closed and bounded subset C of a uniformly convex Banach space X. Assume that T is completely continuous and satisfies condition C^* . Define a sequence $\{x_n\}$ in C by x_1 in C and $x_{n+1} = \lambda T x_n + (1 - \lambda) x_n$ for $n \in \mathbb{N}$, where $\lambda \in (0, 1)$ is a real number. Then $\{x_n\}$ converges strongly to a fixed point of T.

Proof: From lemma (4), $\lim ||x_n - Tx_n|| = 0$. Since $\{x_n\}$ is bounded and T is completely continuous, then $\{Tx_n\}$ has a subsequence $\{Tx_{n_k}\}$ which converges strongly. Hence $\{x_{n_k}\}$ converges strongly. Suppose $\lim\{x_{n_k}\} = z$. Then $\lim\{Tx_{n_k}\} = Tz$. Hence $\lim ||x_{n_k} - Tx_{n_k}|| = ||z - Tz|| = 0$, so that $z \in F(T)$. Lemmas (2) and (4) now imply $\lim ||x_n - z|| = 0$. This completes the proof of the theorem.

Theorem 7: Let T with $F(T) \neq \emptyset$, be a mapping on a nonempty, convex, closed and bounded subset C of a uniformly convex Banach space X. Assume T is continuous, demi-compact and satisfies condition C^* . Define a sequence $\{x_n\}$ in C by x_1 in C and $x_{n+1} = \lambda T x_n + (1 - \lambda) x_n$ for $n \in \mathbb{N}$, where $\lambda \in (0, 1)$ is a real number. Then $\{x_n\}$ converges strongly to a fixed point of T.

Proof: Since T is demi-compact, then $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ which converges strongly. Let $\lim x_{n_k} = w$. Now, since $\lim ||x_{n_k} - Tx_{n_k}|| = 0$, and T is continuous, we have $\lim ||x_{n_k} - Tx_{n_k}|| = ||w - Tw|| = 0$. This implies $w \in F(T)$. From $\lim ||x_{n_k} - w|| = 0$, lemma (2) and lemma (4), we have that $\{x_n\}$ converges to a fixed point of T.

Theorem 8: Let C be a closed convex subset of UCED Banach space X. Let S be a family of continuous demicompact commuting mappings on C satisfying condition C^* . Then S has a common fixed point.

Proof: Observe that $F(T_i) \neq \emptyset$, $\forall i \in S$. Further more by lemma (3), $F(T_i)$ is closed and convex for all $i \in S$. The rest of the proof now follows as in [22].

Remark 1: Observe that the mapping exhibited in our example is a continuous mapping. Hence the continuity condition imposed on T in our theorems is natural.

Competing Interests: The authors declare that there are no completing interests surrounding this research work.

References

- J.B Quelques aspects de la theoric des point fixes dans les espaces de Banach.
 I,II,in: seminaire d Analysis Fonctionnelle (1978-1979),vols. 7-8, Ecole Polytech.,Palaiseau, 1979,45 pp.(in French).
- 2 . F.B.Browder, fixed-point theorems for noncompact mappings in Hilbert spaces, Proc. Natl.Acad. Sci. USA 53 (1965) 1272-1276.
- 3 . F.E. Browder, Nonexpansive nonlinear operators in a Banach space,Proc. Natl. Acad. Sci. USA 54(1965) 1041-1044.
- $4\,$. E.H.Connell,
Properties of fixed point spaces, Proc.Amer. Math.Soc
.10(1959)974-979.
- 5 . J.B. Diaz, F.T. Metcalf, On the structure of the set of subsequential Limit points of succesive approximations, Bull. Amer. Math. Soc. 73 (1967) 516-519.
- 6 . D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J.London Math. Soc. 25(1982) 139-144.
- 7 . M. Edelstein, R.C. O Brien, Nonexpansive mappings, asymptotic regularly and successive approximation, J.London Math. Soc. 17(1978) 547-554.
- 8 . K Goebel, W.A Kirk, Iteration process for nonexpansive mappings, Contemp. Math. 21 (1938) 115-123.
- 9 . K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv.Math.,vol. 28, Cambridge Univ. Press, 1990.
- 10 D. Gohde, Zum Prinzip def kontraktiven Abbildug, Math. Nachr. 30(1965) 251-258.
- 11 J-P. Gossez, E. Lami Dozo, some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J.Math. 40(1972) 565-573.
- 12 S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59(1976) 65-71.
- 13 W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72(1965) 1004-1006.
- 14 W.A.Kirk, Caristis fixed point theorem and Metric convexity, Colloq. Math. 36(1976) 81-86.
- 15 Z.Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer.Math. Soc. 73(1976) 591-597.

- 16 S.Prus, Geometrical background of metric fixed point theory,in: W.A. Kirk, B.Sims (Eds.), Handbook of Metric Fixed point Theory, Kluwer Academic Publishers, Dordeecht, 2001,pp. 93-132.
- 17 P.V Subrahmanyam, Completeness and fixed point, Monatsh. Math.80 (1975) 325-330.
- 18 T.Suzuki, Krasnoselskii and Manns type sequences and Ishikawas strong convergence theorem, in: W.Takahashi, T. Tanata(Eds), Proceedings of the third International Conference on Nonlinear Analysis, Yokohama Publishers, 2004, pp. 527-539.
- 19 T.Suzuki, strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed point Theory Appl. 2005 (2005) 103-123.
- 20 T. Suzuki convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J.Math. Anal.Appl.305(2005) 227-239.
- 21 T.Suzuki, A generalized Banach contraction principle which characterizes metric completeness,Proc. Amer. Math. Soc., in press.
- 22 T.Suzuki, Fixed Point Theorems and Convergence Theorems for Some Generalized Nonexpansive Mappings, J. Math. Anal. and Appl. 340 (2008) 1088 1095.
- 23 H. K. Xu, Inequalities in Banach Spaces with Applications, Nonlinear Anal. 16(1991), 1127 1138.
- 24 M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed Points of Asymptotically Demicontractive Mappings in Arbitrary Banach Spaces, PanAmerican Math. Journal 12 (2), (2002) 77 88
- 25 W. V. Petryshyn, Construction of Fixed Points of Demicompact Mappings in Hilbert Spaces, J. Math. Anal. Appl. 14 (1966), 276 284